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ABSTRACT 

The Linearized Boltzmann Equation (LBE) is the basic equation for tackling rarefied gas flows 

deduced by small local gradients of driving forces [1,2]. The LBE has been numerically solved by 

various computational methods [3-7]. However, even with today’s computational power, the solution 

of the LBE remains computationally a very demanding task. To reduce the computational effort 

various kinetic models have been proposed by replacing the original collision operator with simplified 

expressions with the BGK kinetic model [8] being the most widely used one. In all kinetic models 

some approximation error is introduced, which may be determined by comparing the results provided 

by the kinetic model with the ones provided by the BE in some fundamental problems [3-7]. 

In the present work a source code to solve the LBE based on the discrete velocity method is 

developed. The code is validated and benchmarked by solving the classical Poiseuille, thermal creep 

and Couette flow problems and comparing the results with corresponding ones available in the 

literature [3-6]. Furthermore, a comparison with results obtained by the linearized BGK model is 

performed. In addition, a detailed investigation of the computational effort and accuracy for solving 

the LBE for different sets of velocity grids is provided. It is noted that the final objective is to apply 

the LBE code in rarefied gas mixtures flows and in order to achieve that, the present benchmarking 

task in the case of single gases is essential. 

 The investigated configuration concerns a gas between two infinite parallel plates set at 

/ 2x H =  . In the Poiseuille and thermal creep flow configurations the gas is disturbed by a small 

pressure or temperature gradient in the y  direction respectively, while in the Couette flow the 

disturbance originates from the longitudinal movement of the two plates in opposite directions. The 

formulation of the BGK kinetic model has been thoroughly presented in [2] and is omitted here. 

Similar to the BGK or other kinetic models, the BE can be linearized by expressing the distribution 

function around the global Maxwellian distribution ( )0f c  through the so-called perturbed distribution 

function ( ),ih x c , with subscript , ,i P T C=  denoting the Poiseuille, thermal creep and Couette 

problems respectively. Following the linearization procedure described in [6] it is shown that each of 

the perturbation functions ( ),ih x c  must satisfy:  
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where c  is the dimensionless molecular velocity,   is the dimensionless viscosity,   is the 

rarefaction parameter, K  and v  are the dimensionless collision kernel and frequency respectively, 

while is  corresponds to the source term of each problem: 

 ( )2, 5 2 , 0P y T y Cs c s c c s= − = − − =  (2) 

The corresponding boundary conditions at each wall are: 

 ( / 2, ) ( / 2, ) 0, ( / 2, ) ( / 2, ) 0i i x i i xh H h H c h H h H c+ +− = −  = c c c c  (3) 

where ih+  denotes the outgoing distributions. For a fully diffuse gas-surface interaction the outgoing 

distributions for the three different problems are: 

 ( / 2, ) 0, ( / 2, ) 0, ( / 2, )P T C yh H h H h H c+ + + =  =  = c c c  (4) 

It is noted that in both the BGK kinetic model and the LBE some velocity space variables can be 

eliminated in order to reduce the computational effort. In the BGK model the well-known projection 

procedure is used in order to eliminate the velocity components in the y  and z  directions, and thus 

the distribution function only depends on the spatial variable x  and the magnitude of the xc  molecular 

velocity. In the LBE a velocity projection cannot be applied due to the form of the collision operator. 

However, by introducing polar coordinates for the velocity space the polar angle can be eliminated and 

thus the distribution function will only depend on the spatial variable x  and the magnitudes of the xc   

and rc  molecular velocities. 

 In Fig. 1 the dimensionless flow rate and heat flux are presented for the case of the pressure driven 

flow between parallel plates from the free molecular regime up to the transition regime. The results of 

the LBE show an excellent agreement with the ones provided in [5] with highest deviations of 0.1% 

and 0.5% for the flow rate and heat flux respectively.  Comparing with the linearized BGK results it is 

seen that in the transition regime the flow rate results are in good agreement and the highest relative 

deviation is 4%. However, in the case of the heat flux the agreement is not good and deviations up to 

20% are observed. This is contributed to the well-known fact that the BGK model provides an 

erroneous Prandtl number Pr 2 3=  instead of the correct Pr 1= . Similar results, for the 

dimensionless flow rate, heat flux and mean wall shear stress for the thermal creep and Couette flow 

configurations will be provided. 

 

 
Figure 1: Dimensionless flow rate (left) and heat flux (right) against gas rarefaction in the Poiseuille problem. 
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 As already mentioned, kinetic models circumvent the computation of the Boltzmann collision 

operator, thus significantly reducing the computational effort. In addition, the computation effort is 

further reduced since the solution of the BGK depends on two variables due to the applied projection 

instead of three variables required for the LBE. In Fig. 2 the CPU time required for the solution of the 

BGK and LBE with a convergence criterion of 610−  for all macroscopic quantities is presented. It is 

observed that the CPU time required for LBE is around 4-5 orders of magnitude higher than the CPU 

time required for the BGK kinetic model. In addition, increasing the velocity grid from 80 40

velocities in the x  and r  directions to 100 80 , leads to a computational time around 2.5 times 

higher. Furthermore, moving to a 120 60  velocity grid the computational time is increased by 4.5 

times. It is noted, that in the BGK the dependence of computational time with respect to the velocity 

grid is linear. However, in the LBE the computational time has a polynomial dependence on the 

velocity grid with a power about 3.5-4 and this is contributed to the additional operations required for 

the computation of the collision kernel.  

 
Figure 2: CPU time required for convergence of the Poiseuille solution. 

 

 The presented work is a preliminary investigation of the LBE in single gas flows before moving 

to the solution of rarefied binary gas mixture problems where kinetic models are not widely available, 

while the available ones, in most cases, have not been verified with respect to the Boltzmann equation.  
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